

Widerstandsthermometer

Typ TR10-C

*838383*33

Artikel Nr. 148302

Typen Nr. TR10-C.100.4.A.12.K.100

Beispielhafte Darstellung

Widerstandsthermometer dieser Typenreihe sind vorgesehen zum direkten Einschrauben in den Prozess, hauptsächlich in Behälter und Rohrleitungen. Sie eignen sich für flüssige und gasförmige Medien bei mäßiger mechanischer Belastung und normaler chemischer Beanspruchung. Das Schutzrohr aus CrNi-Stahl ist komplett verschweißt und in den Anschlusskopf eingeschraubt. Der auswechselbare Messeinsatz kann ausgebaut werden, ohne den kompletten Fühler aus der Anlage demontieren zu müssen. So können Überprüfungen, Messmittelüberwachung, oder im Servicefall ein Austausch während des Betriebs bei laufender Anlage durchgeführt werden. Die Wahl von Norm- oder Standardlängen wirkt sich günstig auf die Lieferzeit und eine evtl. Bevorratung von Ersatzteilen aus.

Technische Informationen

WIKA Typ	TR10-C
Gehäuse	Aluminium
Anzeigebereich	-30 bis 300 °C
Umgebungstemperatur	-40 bis 80 °C
Kabeleingang	Standard Kabelverschraubung M20x1,5
Messeinsatz Ø	6 mm
Anschluss zum Halsrohr	M24x1,5 mm
Werkstoff Schutzrohr	CrNi-Stahl 1.4571
Anschlussgehäuse	BSZ, Kugelform, Klappdeckel
Schutzart	IP 65
Genauigkeit	Klasse A
Ausgangssignal	Pt100, 4-Leiter
Einbaulänge	100 mm
Gewinde	G 1/2 AG
Transmitter	ohne

Weitere Sonderausführungen u.a. mit unterschiedlichen Einbaulängen, Prozessanschlüssen, Schutzrohrausführungen, Anschlussköpfe sowie Sensortyp und -anzahl, Genauigkeitsklassen und Schaltungsarten sind für die jeweilige Anwendung individuell wählbar und auf Anfrage erhältlich. Außerdem sind eine große Anzahl verschiedenster explosionsgeschützter Zulassungen für den TR10-C verfügbar. Optional werden analoge oder digitale Transmitter im Anschlusskopf des TR10-C montiert.

RIEGLER & Co. KG Schützenstraße 27 72574 Bad Urach Tel. +49 7125 9497-642 technik@riegler.de

Seite 1 von 28

Kaufmännische Daten

Zolltarifnummer	90251900
Ursprungsland	PL
eCl@ss 5.1.4	27270101
eCl@ss 9.0	27270101
UNSPSC_Code_v190501	41112200
UNSPSC_CodeDesc_v190501	Temperature sensors

Einschraub-Widerstandsthermometer Mit mehrteiligem Schutzrohr Typ TR10-C

WIKA Datenblatt TE 60.03

weitere Zulassungen siehe Seite 2

Anwendungen

- Maschinen-, Anlagen- und Behälterbau
- Energie- und Kraftwerkstechnik
- Chemische Industrie
- Lebensmittel- und Getränkeindustrie
- Sanitär-, Heizungs- und Klimatechnik

Leistungsmerkmale

- Sensorbereiche von -196 ... +600 °C [-320 ... +1.112 °F]
- Mit integriertem mehrteiligen Schutzrohr
- Gefederter Messeinsatz (auswechselbar)
- Explosionsgeschützte Ausführungen sind für viele Zulassungsarten verfügbar (siehe Seite 2)

Beschreibung

Widerstandsthermometer dieser Typenreihe sind vorgesehen zum direkten Einschrauben in den Prozess, hauptsächlich in Behälter und Rohrleitungen.

Diese Thermometer eignen sich für flüssige und gasförmige Medien bei mäßiger mechanischer Belastung und normaler chemischer Beanspruchung. Das Schutzrohr aus CrNi-Stahl ist komplett verschweißt und in den Anschlusskopf eingeschraubt. Der auswechselbare Messeinsatz kann ausgebaut werden, ohne den kompletten Fühler aus der Anlage demontieren zu müssen. So können Überprüfungen, Messmittelüberwachung, oder im Servicefall ein Austausch während des Betriebs bei laufender Anlage durchgeführt werden. Die Wahl von Norm- oder Standardlängen wirkt sich günstig auf die Lieferzeit und eine evtl. Bevorratung von Ersatzteilen aus.

Typ TR10-C mit mehrteiligem Schutzrohr

Einbaulänge, Prozessanschluss, Schutzrohrausführung, Anschlusskopf sowie Sensortyp und -anzahl, Genauigkeit und Schaltungsart sind für die jeweilige Anwendung individuell wählbar.

Eine große Anzahl verschiedenster explosionsgeschützter Zulassungen sind für den TR10-C verfügbar.

Optional montieren wir analoge oder digitale Transmitter aus dem WIKA-Programm im Anschlusskopf des TR10-C.

WIKA Datenblatt TE 60.03 · 02/2021

Seite 1 von 18

Datenblätter zu ähnlichen Produkten Einschraub-Thermoelement; Typ TC10-C; siehe Datenblatt TE 65.03

Explosionsschutz (Option)

Die zulässige Leistung P_{max} sowie die zulässige Umgebungstemperatur für die jeweilige Kategorie dem Ex-Zertifikat oder der Betriebsanleitung entnehmen.

Transmitter haben eigene Ex-Zertifikate. Die zulässigen Umgebungstemperaturbereiche der eingebauten Transmitter den entsprechenden Transmitterbetriebsanleitungen bzw. -zulassungen entnehmen.

Zulassungen (Explosionsschutz, weitere Zulassungen)

Logo	Beschreibung		Land
CE	EU-Konformitätserklärung EMV-Richtlinie 1) EN 61326 Emission (Gruppe 1, Klasse B) und Störfe RoHS-Richtlinie	stigkeit (industrieller Bereich)	Europäische Union
€	Zone 1 Anbau an Zone 0 Gas II 1/2G Zone 1 Gas II 2G E Zone 20 Staub II 1D E Zone 21 Anbau an Zone 20 Staub II 1/2D Zone 21 Staub II 2D E Zone 1 Gas II 2G E Zone 2 Gas II 3G E Zone 21 Staub II 2D E Zone 2 Staub II 3G E Zone 21 Staub II 2D E Zone 22 Staub II 3D E Zone 22 Staub II 3D E	cia IIC T1T6 Ga Ex ia IIC T1T6 Ga/Gb cia IIC T1T6 Gb cia IIC T1T6 Gb cia IIC T125T65 °C Da Ex ia IIIC T125T65 °C Da/Db cia IIIC T125T65 °C Db ce IIC T1T6 Gb ³⁾ ce CIIC T1T6 Gc X ctb IIIC TX °C Db ³⁾ ctc IIIC TX °C Dc X cnA IIC T1T6 Gc X ctc IIIC TX °C Dc X	
IEC IEĈEX	Zone 1 Anbau an Zone 0 Gas Ex ia III Zone 1 Gas Ex ia III Zone 20 Staub Ex ia III Zone 21 Anbau an Zone 20 Staub Ex ia III	CT1T6 Ga CT1T6 Ga/Gb CT1T6 Gb CT125T65 °C Da CT125T65 °C Da/Db CT125T65 °C Db	International
EHLEX	Zone 1 Gas 1Ex ia Zone 20 Staub Ex ia II Zone 21 Staub Ex ia II	IIC T6 T1 Ga X IIC T6 T1 Gb X IC T80 T440 °C Da X IC T80 T440 °C Db X IIC T6 T1 Gc X	Eurasische Wirt- schaftsgemeinschaft
€	Zone 1 Anbau an Zone 0 Gas II 1/2G Zone 1 Gas II 2G E Zone 20 Staub II 1D E Zone 21 Anbau an Zone 20 Staub II 1/2D	c ia IIC T1 T6 Ga Ex ia IIC T1 T6 Ga/Gb c ia IIC T1 T6 Gb c ia IIIC T65°C Da Ex ia IIIC T65°C Da/Db c ia IIIC T65°C Db	Ukraine

WIKA Datenblatt TE 60.03 · 02/2021

Seite 2 von 18

Nur bei eingebautem Transmitter
 Nur bei Anschlusskopf Typ BSZ oder BSZ-H (siehe "Anschlusskopf")
 Ohne Transmitter

Logo	Beschreibung		Land
NAMETRO	INMETRO (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Anbau an Zone 0 Gas Zone 20 Staub Zone 21 Anbau an Zone 20 Staub	Ex ia IIC T3 T6 Ga Ex ia IIC T3 T6 Ga/Gb Ex ia IIIC T125 T65 °C Da Ex ia IIIC T125 T65 °C Da/Db	Brasilien
	CCC (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Gas Zone 1 Anbau an Zone 0 Gas Zone 2 Gas Zone 20 Staub Zone 21 Staub Zone 21 Anbau an Zone 20 Staub - Ex n Zone 2 Gas	Ex ia IIC T1 ~ T6 Ga Ex ia IIC T1 ~ T6 Gb Ex ia IIC T1 ~ T6 Ga/Gb Ex ia IIC T1 ~ T6 Ga/Gb Ex ic IIC T1 ~ T6 Gc Ex iaD 20 T65/T95/T125°C Ex iaD 21 T65/T95/T125°C Ex iaD 20/21 T65/T95/T125°C Ex nA IIC T1 ~ T6 Gc	China
E s	KCs - KOSHA (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Gas	Ex ia IIC T4 T6 Ex ib IIC T4 T6	Südkorea
-	PESO (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Anbau an Zone 0 Gas Zone 1 Gas	Ex ia IIC T1 T6 Ga Ex ia IIC T1 T6 Ga/Gb Ex ia IIC T1 T6 Gb	Indien
©	GOST (Option) Metrologie, Messtechnik		Russland
8	KazInMetr (Option) Metrologie, Messtechnik		Kasachstan
-	MTSCHS (Option) Genehmigung zur Inbetriebnahme		Kasachstan
(BelGIM (Option) Metrologie, Messtechnik		Weißrussland
•	UkrSEPRO (Option) Metrologie, Messtechnik		Ukraine
	Uzstandard (Option) Metrologie, Messtechnik		Usbekistan

Herstellerinformationen und Bescheinigungen

Logo	Beschreibung
siL	SIL 2 Funktionale Sicherheit (nur in Verbindung mit Temperaturtransmitter Typ T32)
NAMUR	NAMUR NE 024 Explosionsgefährdete Bereiche (Ex i)

Mit "ia" gekennzeichnete Geräte dürfen auch in Bereichen eingesetzt werden, welche nur "ib" oder "ic" gekennzeichnete Geräte erfordern. Wird ein Gerät mit Kennzeichnung "ia" in einem Bereich mit Anforderungen nach "ib" oder "ic" eingesetzt, darf es anschließend nicht mehr in Bereichen mit Anforderungen nach "ia" betrieben werden.

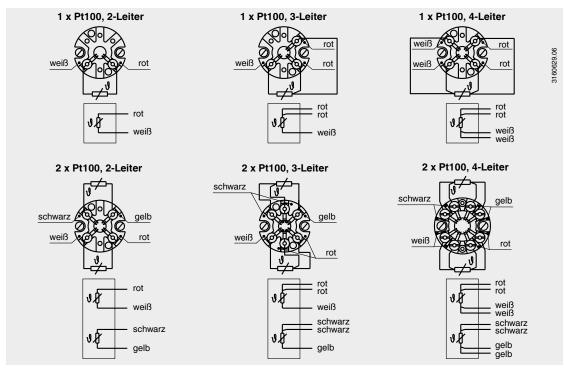
Zulassungen und Zertifikate siehe Internetseite

WIKA Datenblatt TE 60.03 · 02/2021 Seite 3 von 18

Sensor

Messelement

Pt100, Pt1000 1) (Messstrom: 0,1 ... 1,0 mA) 2)


Schaltungsart	
Einfach-Elemente	1 x 2-Leiter 1 x 3-Leiter 1 x 4-Leiter
Doppel-Elemente	2 x 2-Leiter 2 x 3-Leiter 2 x 4-Leiter ³⁾

Gültigkeitsgrenzen der Klassengenauigkeit nach EN 60751							
Klasse	Sensorbauart						
	Drahtgewickelt	Dünnschicht					
Klasse B	-196 +600 °C -196 +450 °C	-50 +500 °C -50 +250 °C					
Klasse A 4)	-100 +450 °C	-30 +300 °C					
Klasse AA 4)	-50 +250 °C	0 150 °C					

- Pt1000 nur als Dünnschicht-Messwiderstand erhältlich
 Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.
 Nicht bei Durchmesser 3 mm
 Nicht bei Schaftungsart 2-Leiter

Die Tabelle zeigt die in der jeweiligen Norm aufgeführten Temperaturbereiche, in denen die Grenzabweichungen (Klassengenauigkeiten) gültig sind.

Elektrischer Anschluss (Farbcode nach IEC/EN 60751)

Die elektrischen Anschlüsse eingebauter Temperaturtransmitter den entsprechenden Datenblättern bzw. Betriebsanleitungen entnehmen.

WIKA Datenblatt TE 60.03 · 02/2021 Seite 4 von 18

Anschlusskopf

■ Europäische Ausführungen nach EN 50446 / DIN 43735

BS

BSZ, BSZ-K BSZ-H, BSZ-HK, BSZ-H / DIH10

BSS

BSS-H

Тур	Werk- stoff	Gewindegröße Kabeleingang	Schutzart (max.) ¹⁾ IEC/EN 60529	Deckelverschluss	Oberfläche	Anschluss zum Halsrohr
BS	Aluminium	M20 x 1,5 oder ½ NPT 3)	IP65 ⁴⁾	Flacher Deckel mit 2 Schrauben	Blau, lackiert 5)	M24 x 1,5, ½ NPT
BSZ	Aluminium	M20 x 1,5 oder ½ NPT 3)	IP65 ⁴⁾	Kugel-Klappdeckel mit Zylinderschraube	Blau, lackiert 5)	M24 x 1,5, ½ NPT
BSZ-H	Aluminium	M20 x 1,5 oder ½ NPT 3)	IP65 ⁴⁾	Hoher Klappdeckel mit Zylinderschraube	Blau, lackiert 5)	M24 x 1,5, ½ NPT
BSZ-H (2x Kabelabgang)	Aluminium	2 x M20 x 1,5 oder 2 x ½ NPT ³⁾	IP65 ⁴⁾	Hoher Klappdeckel mit Zylinderschraube	Blau, lackiert 5)	M24 x 1,5
BSZ-H / DIH10 ²⁾	Aluminium	M20 x 1,5 oder ½ NPT 3)	IP65	Hoher Klappdeckel mit Zylinderschraube	Blau, lackiert 5)	M24 x 1,5, ½ NPT
BSS	Aluminium	M20 x 1,5 oder ½ NPT 3)	IP65	Kugel-Klappdeckel mit Spannhebel	Blau, lackiert 5)	M24 x 1,5, ½ NPT
BSS-H	Aluminium	M20 x 1,5 oder ½ NPT 3)	IP65	Hoher Klappdeckel mit Spannhebel	Blau, lackiert 5)	M24 x 1,5, ½ NPT
BVS	CrNi-Stahl	M20 x 1,5 ³⁾	IP65	Schraubdeckel Feinguss	Blank, elektropoliert	M24 x 1,5
BSZ-K	Kunststoff	M20 x 1,5 oder ½ NPT 3)	IP65	Kugel-Klappdeckel mit Zylinderschraube	Schwarz	M24 x 1,5
BSZ-HK	Kunststoff	M20 x 1,5 oder ½ NPT 3)	IP65	Hoher Klappdeckel mit Zylinderschraube	Schwarz	M24 x 1,5

Тур	Explosionsschutz					
	Ohne	Ex i (Gas) Zone 0, 1, 2	Ex i (Staub) Zone 20, 21, 22	Ex e (Gas) Zone 1, 2	Ex t (Staub) Zone 21, 22	Ex nA (Gas) Zone 2
BS	X	x	х	-	-	-
BSZ	X	x	х	x ⁶⁾	x ⁶⁾	x ⁷⁾
BSZ-H	x	X	Х	x 6)	X ⁶⁾	x ⁷⁾
BSZ-H (2 x Kabelabgang)	х	x	Х	x ⁶⁾	x ⁶⁾	x ⁷⁾
BSZ-H / DIH10 ²⁾	х	x	-	-	-	-
BSS	X	x	-	-	-	-
BSS-H	X	x	-	-	-	-
BVS	х	x	-	-	-	-
BSZ-K	х	x	-	-	-	-
BSZ-HK	x	x	-	-	-	-

I) IP-Schutzart des Anschlusskopfes. Die IP-Schutzart des Komplettgerätes TR10-C muss nicht zwangsläufig dem Anschlusskopf entsprechen.
 UED-Anzeige DIH10
 Standard (andere auf Anfrage)
 Schutzarten, die zeitweiliges oder dauerndes Untertauchen beschreiben, auf Anfrage
 Nur ATEX und CCC
 Nur ATEX und CCC
 Nur ATEX, CCC und EAC-Ex

WIKA Datenblatt TE 60.03 · 02/2021

Seite 5 von 18

■ Nordamerikanische Ausführungen

KN4-P

Тур	Werkstoff	Gewindegröße Kabeleingang		Deckel / Deckelverschluss		Anschluss zum Halsrohr
KN4-A	Aluminium	$1/2$ NPT oder M20 x 1,5 $^{2)}$	IP65	Schraubdeckel	Blau, lackiert 3)	M24 x 1,5, ½ NPT
KN4-P 4)	Polypropylen	½ NPT	IP65	Schraubdeckel	Weiß	½ NPT

Тур	Explosionsschutz						
	ohne	Ex i (Gas) Zone 0, 1, 2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	` '	Ex nA (Gas) Zone 2	
KN4-A	x	x	-	-	-	-	
KN4-P 4)	x	-	-	-	-	-	

¹⁾ IP-Schutzart des Anschlusskopfes. Die IP-Schutzart des Komplettgerätes TR10-C muss nicht zwangsläufig dem Anschlusskopf entsprechen. 2) Standard (andere auf Anfrage) 3) RAL 5022 4) Auf Anfrage

Anschlusskopf mit Digitalanzeige

Anschlusskopf BSZ-H mit LED-Anzeige Typ DIH10 siehe Datenblatt AC 80.11

Zum Betrieb der Digitalanzeigen ist immer ein Transmitter mit Ausgang $4\dots 20$ mA notwendig.

WIKA Datenblatt TE 60.03 · 02/2021

Seite 6 von 18

Kabeleingang

Standard

Kunststoff

Messing, vernickelt

CrNi-Stahl

Anschlussdose M12 x 1 (4-polig)

Freies Gewinde

2 x freies Gewinde

Verschlussstopfen für Versand

Abbildungen stellen Anschlusskopf-Beispiele dar.

Kabeleingang	Gewindegröße Kabeleingang	Min./Max. Umgebungstemperatur
Standard-Kabeleingang 1)	M20 x 1,5 oder ½ NPT	-40 +80 °C
Kabelverschraubung Kunststoff (Kabel-Ø 6 10 mm) 1)	M20 x 1,5 oder ½ NPT	-40 +80 °C
Kabelverschraubung Kunststoff (Kabel-Ø 6 10 mm), Ex e 1)	M20 x 1,5 oder ½ NPT	-20 +80 °C (Standard) -40 +70 °C (Option)
Kabelverschraubung Messing, vernickelt (Kabel-Ø 6 12 mm)	M20 x 1,5 oder ½ NPT	-40 +80 °C
Kabelverschraubung CrNi-Stahl (Kabel-Ø 7 12 mm)	M20 x 1,5 oder ½ NPT	-40 +80 °C
Freies Gewinde	M20 x 1,5 oder ½ NPT	-
2 x M20 x 1,5 ²⁾	2 x M20 x 1,5 oder 2 x ½ NPT	-
Anschlussdose M12 x 1 (4-polig) 3)	M20 x 1,5	-40 +80 °C
Verschlussstopfen für Versand	M20 x 1,5 oder 1/2 NPT	-40 +80 °C

Kabeleingang	Farbe	Schutzart	Explo	sionsschu	ıtz			
3 3	(max.) IEC/EN 60529 ⁴⁾		ohne	Ex i (Gas) Zone 0, 1, 2	Ex i (Staub) Zone 20, 21, 22	Ex e (Gas) Zone 1, 2	Ex t (Staub) Zone 21, 22	Ex nA (Gas) Zone 2
Standard-Kabeleingang 1)	Blank	IP65	х	x	-	-	-	-
Kabelverschraubung Kunststoff 1)	Schwarz oder grau	IP66 ⁵⁾	x	x	-	-	-	-
Kabelverschraubung Kunststoff, Ex e 1)	Hellblau	IP66 5)	X	x	x	-	-	-
Kabelverschraubung Kunststoff, Ex e 1)	Schwarz	IP66 5)	х	x	x	х	х	X
Kabelverschraubung Messing, vernickelt	Blank	IP66 ⁵⁾	x	X	x	-	-	-
Kabelverschraubung Messing, vernickelt, Ex e	Blank	IP66 ⁵⁾	x	x	x	x	х	x
Kabelverschraubung CrNi-Stahl	Blank	IP66 5)	X	X	X	-	-	-
Kabelverschraubung CrNi-Stahl, Ex e	Blank	IP66 5)	х	x	x	X	X	x
Freies Gewinde	-	IP00	X	x	x 7)	x ⁷⁾	x 7)	x 7)
2 x M20 x 1,5 ²⁾	-	IP00	X	x	x ⁷⁾	x ⁷⁾	x ⁷⁾	x 7)
Anschlussdose M12 x 1 (4-polig) 3)	-	IP65	X	X ⁶⁾	x 6)	-	-	-
Verschlussstopfen für Versand	Transparent	-	entfällt	entfällt, Transportschutz				

WIKA Datenblatt TE 60.03 · 02/2021

Seite 7 von 18

¹⁾ Nicht verfügbar für Anschlusskopf BVS
2) Nur für Anschlusskopf BSZ-H
3) Nicht verfügbar für Gewindegröße Kabeleingang ½ NPT
4) Nicht verfügbar für Gewindegröße Kabeleingang ½ NPT
4) IP-Schutzart der Kabelverschraubung. Die IP-Schutzart des Komplettgerätes TR10-C muss nicht zwangsläufig der Kabelverschraubung entsprechen.
5) Schutzarten, die zeitweiliges oder dauerndes Untertauchen beschreiben, auf Anfrage
6) Mit geeignetem aufgestecktem Gegenstecker
7) Geeignete Kabelverschraubung zum Betrieb notwendig

Schutzart nach IEC/EN 60529

Schutzgrade gegen feste Fremdkörper (bezeichnet durch die 1. Kennziffer)

Erste Kennziffer	Schutzgrad / Kurzbeschreibung	Prüfparameter
5	Staubgeschützt	nach IEC/EN 60529
6	Staubdicht	nach IEC/EN 60529

Schutzgrade gegen Wasser (bezeichnet durch die 2. Kennziffer)

Zweite Kennziffer	Schutzgrad / Kurzbeschreibung	Prüfparameter
4	Geschützt gegen Spritzwasser	nach IEC/EN 60529
5	Geschützt gegen Strahlwasser	nach IEC/EN 60529
6	Geschützt gegen starkes Strahlwasser	nach IEC/EN 60529
7 1)	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser	nach IEC/EN 60529
8 1)	Geschützt gegen die Wirkungen beim dauernden Untertauchen in Wasser	nach Vereinbarung

¹⁾ Schutzarten, die zeitweiliges oder dauerndes Untertauchen beschreiben, auf Anfrage

Standard-Schutzart des Typ TR10-C ist IP65.

Die angegebenen Schutzgrade gelten unter folgenden Voraussetzungen:

- Verwendung einer geeigneten Kabelverschraubung
- Zur Verschraubung passende Kabelquerschnitte verwenden bzw. zum vorhandenen Kabel die geeignete Kabelverschraubung auswählen
- Anzugsmomente für alle Verschraubungen beachten

Transmitter

Montage auf dem Messeinsatz

Bei der Montage auf dem Messeinsatz ersetzt der Transmitter den Anschlusssockel und wird direkt auf der Sockelplatte des Messeinsatzes befestigt.

WIKA Datenblatt TE 60.03 · 02/2021

Montage im Deckel des Anschlusskopfes

Die Montage des Transmitters im Deckel des Anschlusskopfes ist der Montage auf dem Messeinsatz zu bevorzugen. In dieser Montageart wird zum Einen eine bessere thermische Entkopplung und zum Anderen eine Vereinfachung von Austausch und Montage im Servicefall gewährleistet.

Seite 8 von 18

Transmittertypen

Ausgangssignal 4 20 mA, HART®-Protokoll					
Transmitter (auswählbare Ausführungen)	Typ T15	Typ T32			
Datenblatt	TE 15.01	TE 32.04			
Ausgang					
4 20 mA	x	x			
HART®-Protokoll	-	x			
Schaltungsart					
1 x 2-Leiter, 3-Leiter oder 4-Leiter	x	x			
Messstrom	< 0,2 mA	< 0,3 mA			
Explosionsschutz	Optional	Optional			

Mögliche Transmitter-Montagepositionen

Anschlusskopf	T15	T32
BS	0	-
BSZ, BSZ-K	0	0
BSZ-H, BSZ-HK	•	•
BSZ-H (2x Kabelabgang)	•	•
BSZ-H / DIH10	0	0
BSS	0	0
BSS-H	•	•
BVS	0	0
KN4-A / KN4-P	0	0

O Montage anstelle des Anschlusssockels

Montage im Deckel des Anschlusskopfes

- Montage nicht möglich

Die Montage eines Transmitters auf dem Messeinsatz ist bei allen hier aufgeführten Anschlussköpfen möglich. Der Einbau eines Transmitters in den (Schraub-)Deckel eines Anschlusskopfes der Nordamerikanischen Ausführungen ist nicht möglich. Einbau von 2 Transmittern auf Anfrage.

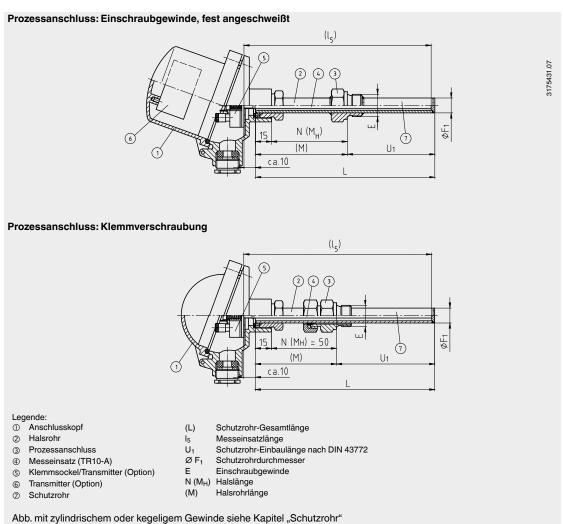
Bei der Ermittlung der Gesamtmessabweichung sind die Sensor- und die Transmittermessabweichung zu addieren.

Funktionale Sicherheit (Option) mit Temperaturtransmitter Typ T32

In sicherheitskritischen Applikationen ist die gesamte Messkette in Bezug auf die sicherheitstechnischen Parameter zu betrachten. Die SIL-Klassifizierung erlaubt die Bewertung der durch die Sicherheitseinrichtungen erreichten Risikoreduzierung.

Ausgewählte TR10-C Widerstandsthermometer in Verbindung mit einem entsprechenden Temperaturtransmitter (z. B. Typ T32.1S, TÜV zertifizierte SIL-Version für Schutz-

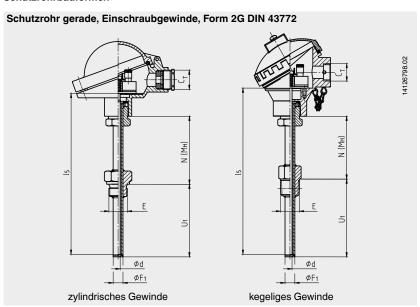
einrichtungen entwickelt nach IEC 61508) eignen sich als Sensoren für Sicherheitsfunktionen bis SIL 2.

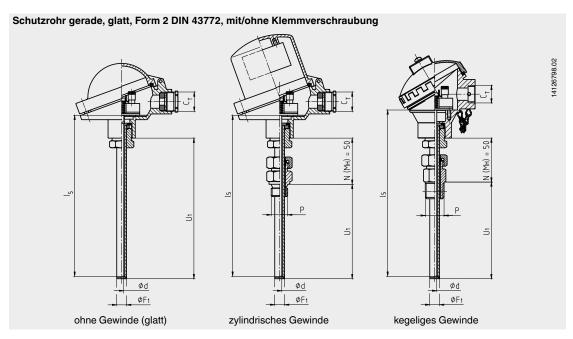

Detailierte Angaben siehe Technische Information IN 00.19 unter www.wika.de.

WIKA Datenblatt TE 60.03 · 02/2021

Seite 9 von 18

Komponenten Typ TR10-C


WIKA Datenblatt TE 60.03 · 02/2021

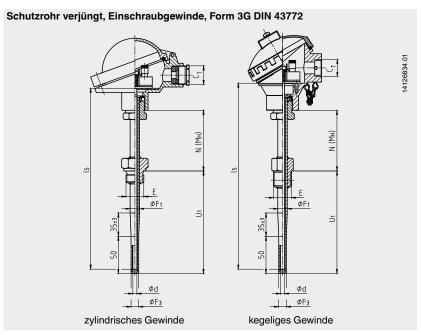

Seite 10 von 18

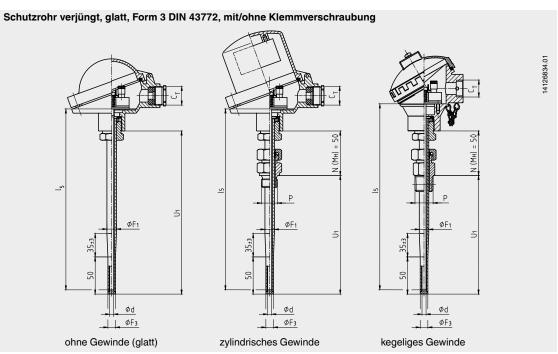
Schutzrohr

Schutzrohrbauformen

Legende:

U₁ Einbaulänge $ot\! O F_1$ Schutzrohrdurchmesser I₅ Messeinsa N (M_H) Halslänge Messeinsatzlänge Einschraubgewinde Ød Messeinsatzdurchmesser

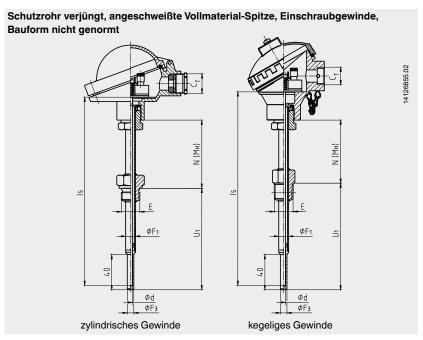

Gewinde Kabeleingang Einschraubgewinde Klemmverschraubung

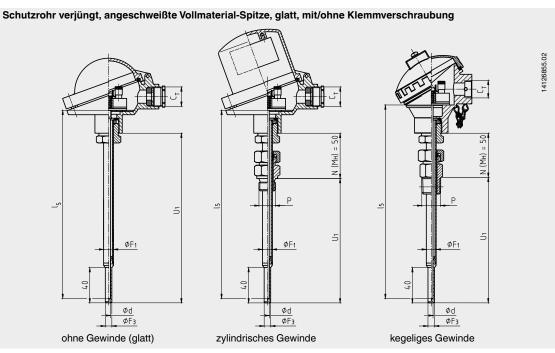

Abbildungen stellen Anschlusskopf-Beispiele dar.

WIKA Datenblatt TE 60.03 · 02/2021

Seite 11 von 18

Legende:


 U_1 Einbaulänge $ØF_3$ ${\bf Schutzrohrspitzendurchmesser}$ Messeinsatzlänge Ε Einschraubgewinde Ød Messeinsatzdurchmesser


N (M_H) Halslänge C_T Gewinde Kabeleingang Ø F₁ Schutzrohrdurchmesser Einschraubgewinde Klemmverschraubung

Abbildungen stellen Anschlusskopf-Beispiele dar.

WIKA Datenblatt TE 60.03 · 02/2021 Seite 12 von 18

Legende:

3/4 NPT: 8,61 mm P Einschraubgewinde Klemmverschraubung

C_T Gewinde Kabeleingang

Abbildungen stellen Anschlusskopf-Beispiele dar.

WIKA Datenblatt TE 60.03 · 02/2021

Seite 13 von 18

Schutzrohrausführungen

Die Schutzrohre sind aus gezogenem Rohr mit eingeschweißtem Boden gefertigt und werden mit einer drehbaren Verschraubung (Druckschraube) in den Anschlusskopf eingeschraubt. Durch Lösen dieser Druckschraube kann der Anschlusskopf - und damit der Kabelabgang - in die gewünschte Position ausgerichtet werden. Der Prozessanschluss wird werksseitig nach Kundenvorgabe angeschweißt. Dadurch ist die Einbaulänge festgelegt. Einbaulängen nach DIN sind zu bevorzugen. Die Eintauchtiefe in das Prozessmedium sollte mindestens das 10-fache des Schutzrohr-Außendurchmessers betragen. Für Ersatzbedarf Schutzrohr Typ TW35 verwenden.

Schutzrohr nach DIN 43772	Schutzrohr- durchmesser	Prozessanschluss	Passend für Messein- satzdurchmesser	Anschluss zum Kopf	Werkstoff
Gerade, Form 2G, Einschraubgewinde	9 x 1 mm	G 1/4 B, Einschraubgewinde G 1/2 B, Einschraubgewinde G 3/4 B, Einschraubgewinde G 1 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde M27 x 2, Einschraubgewinde 1/2 NPT, Einschraubgewinde 3/4 NPT, Einschraubgewinde G 1/2 B, Einschraubgewinde	6 mm	M24 x 1,5 (drehbare Verschraubung, Druckschraube)	1.4571
	12 x 2,5 mm	G 3/4 B, Einschraubgewinde G 1 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde M27 x 2, Einschraubgewinde 1/2 NPT, Einschraubgewinde 3/4 NPT, Einschraubgewinde			
	14 x 2,5 mm	G 1/2 B, Einschraubgewinde G 3/4 B, Einschraubgewinde G 1 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde M27 x 2, Einschraubgewinde 1/2 NPT, Einschraubgewinde 3/4 NPT, Einschraubgewinde	8 mm (6 mm mit Hülse)		
Verjüngt, Form 3G, Einschraubgewinde	12 x 2,5 mm, verjüngt auf 9 mm	G 1/2 B, Einschraubgewinde G 3/4 B, Einschraubgewinde G 1 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde M27 x 2, Einschraubgewinde 1/2 NPT, Einschraubgewinde 3/4 NPT, Einschraubgewinde	6 mm		
Gerade, glatt, Form 2, mit/ohne Klemmverschrau- bung	9 x 1 mm 11 x 2 mm 12 x 2,5 mm	Klemmverschraubung G 1/2 B (Metallklemmring) Klemmverschraubung 1/2 NPT (Metallklemmring) Ohne Gewindeanschluss, glatt	6 mm		
Verjüngt, glatt, Form 3, mit/ohne Klemmverschrau- bung	12 x 2,5 mm, verjüngt auf 9 mm	Klemmverschraubung G 1/2 B (Metallklemmring) Klemmverschraubung 1/2 NPT (Metallklemmring) Ohne Gewindeanschluss, glatt	6 mm		

weitere Ausführungen nächste Seite

WIKA Datenblatt TE 60.03 · 02/2021 Seite 14 von 18

Verjüngtes Schutz- rohr, nicht genormt	Schutzrohr- durchmesser	Prozessanschluss	Passend für Messein- satzdurchmesser	Anschluss zum Kopf	Werkstoff
Verjüngt,	9 x 1 mm,	G 1/4 B, Einschraubgewinde	3 mm	M24 x 1,5 (drehbare	1.4571
angeschweißte	verjüngt auf 6 mm	G 1/2 B, Einschraubgewinde		Verschraubung,	
Vollmaterialspitze, Einschraubgewinde		G 3/4 B, Einschraubgewinde		Druckschraube)	
		G 1 B, Einschraubgewinde			
		M18 x 1,5, Einschraubgewinde			
		M20 x 1,5, Einschraubgewinde			
		M27 x 2, Einschraubgewinde			
		1/2 NPT, Einschraubgewinde			
		3/4 NPT, Einschraubgewinde			
	11 x 2 mm,	G 1/2 B, Einschraubgewinde			
	verjüngt auf 6 mm	G 3/4 B, Einschraubgewinde			
	12 x 2,5 mm, verjüngt auf 6 mm	G 1 B, Einschraubgewinde			
		M14 x 1,5, Einschraubgewinde			
		M18 x 1,5, Einschraubgewinde			
		M20 x 1,5, Einschraubgewinde			
		1/2 NPT, Einschraubgewinde			
		3/4 NPT, Einschraubgewinde			
Verjüngt, angeschweißte	9 x 1 mm, verjüngt auf 6 mm	Klemmverschraubung G 1/2 B (Metallklemmring)			
Vollmaterialspitze, glatt, mit/ohne	11 x 2 mm, verjüngt auf 6 mm	Klemmverschraubung 1/2 NPT (Metallklemmring)			
Klemmverschraubung	12 x 2,5 mm, verjüngt auf 6 mm	Ohne Gewindeanschluss, glatt			

Gerades Schutz- rohr, nicht genormt	Schutzrohr- durchmesser	Prozessanschluss	Passend für Messein- satzdurchmesser	Anschluss zum Kopf	Werkstoff
Gerade, Einschraubgewinde	6 x 1 mm 8 x 1 mm	G 1/4 B, Einschraubgewinde G 1/2 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde 1/2 NPT, Einschraubgewinde	3 mm	M24 x 1,5 (drehbare Verschraubung, Druckschraube)	1.4571 316L (8 x 1 mm)
	10 x 1 mm 10 x 1,5 mm	G 1/2 B, Einschraubgewinde G 3/4 B, Einschraubgewinde G 1 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde M27 x 2, Einschraubgewinde 1/2 NPT, Einschraubgewinde 3/4 NPT, Einschraubgewinde	6 mm		316L
	12 x 1 mm 12 x 1,5 mm	G 1/2 B, Einschraubgewinde G 3/4 B, Einschraubgewinde G 1 B, Einschraubgewinde M18 x 1,5, Einschraubgewinde M20 x 1,5, Einschraubgewinde M27 x 2, Einschraubgewinde 1/2 NPT, Einschraubgewinde 3/4 NPT, Einschraubgewinde	8 mm (6 mm mit Hülse)		316L

weitere Ausführungen nächste Seite

WIKA Datenblatt TE 60.03 · 02/2021

Seite 15 von 18

Gerades Schutz- rohr, nicht genormt	Schutzrohr- durchmesser	Prozessanschluss	Passend für Messein- satzdurchmesser	Anschluss zum Kopf	Werkstoff
Gerade, glatt, mit/ ohne Klemmver- schraubung	6 x 1 mm 8 x 1 mm	Klemmverschraubung G 1/2 B (Metallklemmring)		M24 x 1,5 (drehbare Verschraubung, Druckschraube)	1.4571 316L (8 x 1 mm)
	9 x 1 mm 10 x 1 mm 10 x 1,5 mm 12 x 1 mm	Klemmverschraubung 1/2 NPT (Metallklemmring)			
		Ohne Gewindeanschluss, glatt			
		Klemmverschraubung G 1/2 B (Metallklemmring)	6 mm		1.4571 (9 x 1 mm) 316L
		Klemmverschraubung 1/2 NPT (Metallklemmring)			
	12 x 1,5 mm	Ohne Gewindeanschluss, glatt			

Einbaulängen

Schutzrohrbauform	Standard-Einbaulänge	Min./max. Einbaulänge
Gerade, Einschraubgewinde, Form 2G DIN 43772	160, 250, 400 mm	50 mm / 4.000 mm
Verjüngt, Einschraubgewinde, Form 3G DIN 43772	160, 220, 280 mm	110 mm / 4.000 mm
Gerade, glatt, mit/ohne Klemmverschraubung, Form 2 DIN 43772	-	50 mm / 4.000 mm
Verjüngt, glatt, mit/ohne Klemmverschraubung, Form 3 DIN 43772	-	110 mm / 4.000 mm
Verjüngt, angeschweißte Vollmaterialspitze, Einschraubgewinde, Bauform nicht genormt	160, 250, 400 mm	75 mm / 4.000 mm
Verjüngt, glatt, angeschweißte Vollmaterialspitze, mit/ohne Klemmverschraubung, Bauform nicht genormt	-	75 mm / 4.000 mm

Halslängen

Schutzrohrbauform	Standard-Halslänge	Min./max. Halslänge
Gerade, Einschraubgewinde, Form 2G DIN 43772	130 mm	30 mm / 1.000 mm
Verjüngt, Einschraubgewinde, Form 3G DIN 43772	132 mm	30 mm / 1.000 mm
Gerade, glatt, mit Klemmverschraubung, Form 2 DIN 43772	50 mm	50 mm
Gerade, glatt, ohne Klemmverschraubung, Form 2 DIN 43772	-	-
Verjüngt, glatt, mit Klemmverschraubung, Form 3 DIN 43772	50 mm	50 mm
Verjüngt, glatt, ohne Klemmverschraubung, Form 3 DIN 43772	-	-
Verjüngt, angeschweißte Vollmaterialspitze, Einschraubgewinde, Bauform nicht genormt	130 mm	30 mm / 1.000 mm
Verjüngt, angeschweißte Vollmaterialspitze, mit Klemmverschraubung, Bauform nicht genormt	50 mm	50 mm
Verjüngt, angeschweißte Vollmaterialspitze, ohne Prozessanschluss, Bauform nicht genormt		-

Das Halsrohr ist in den Anschlusskopf eingeschraubt. Die Halslänge ist abhängig vom Verwendungszweck. Üblicherweise wird mit dem Halsrohr eine Isolation überbrückt. Auch dient das Halsrohr in vielen Fällen als Kühlstrecke zwischen Anschlusskopf und Medium, auch um eventuell eingebaute Transmitter vor hohen Mediumstemperaturen zu schützen.

Andere Ausführungen auf Anfrage

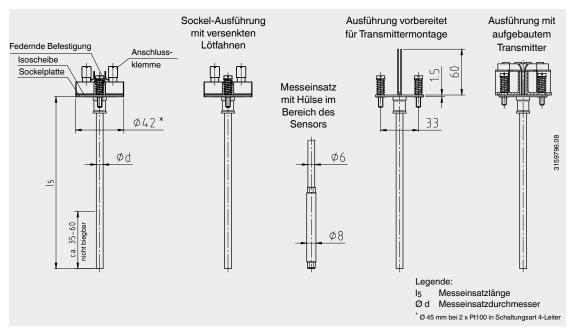
WIKA Datenblatt TE 60.03 · 02/2021

Seite 16 von 18

Messeinsatz

Im TR10-C werden Messeinsätze des Typs TR10-A verbaut.

Der auswechselbare Messeinsatz ist aus vibrationsunempfindlicher Mantelmessleitung (MI-Leitung) gefertigt.


Abb. links: Standardausführung Abb. rechts: Ausführung mit versenkten Lötfahnen (Option)

Nur bei korrekter Messeinsatzlänge und korrektem Messeinsatzdurchmesser ist ein ausreichender Wärmeübergang vom Schutzrohr auf den Messeinsatz gewährleistet.

Der Bohrungsdurchmesser des Schutzrohres sollte max. 1 mm größer sein als der Messeinsatzdurchmesser. Spaltbreiten größer als 0,5 mm zwischen Schutzrohr und Messeinsatz wirken sich negativ auf den Wärmeübergang aus und haben ein ungünstiges Ansprechverhalten des Thermometers zur Folge.

Wichtig beim Einbau in ein Schutzrohr ist die Ermittlung der korrekten Einbaulänge (= Schutzrohrlänge bei Bodenstärken ≤ 5,5 mm). Zu beachten ist dabei, dass der Messeinsatz gefedert ist (Federweg: max. 10 mm), um eine Anpressung auf den Schutzrohrboden zu gewährleisten.

Abmessungen in mm

Messeinsatzdurchmesser Ø d		Kennzahl	Toleranz in mm	Mantelwerkstoff	
in mm		nach DIN 43735		Standardaufbau	Versenkte Lötfahnen
3	Standard	30	3 ±0,05	1.4571, 316L	1.4571
6	Standard	60	6 0	1.4571, 316L	1.4571
8 (6 mm mit Hülse)	Standard	-	8 0	1.4571	1.4571
8	Standard	80	8 0	1.4571, 316L	1.4571

WIKA Datenblatt TE 60.03 · 02/2021

Seite 17 von 18

Einsatzbedingungen

Mechanische Anforderungen

Ausführung				
Standard	6 g Spitze-Spitze, Messwiderstand drahtgewickelt oder Dünnfilm			
Option	Vibrationsfeste Fühlerspitze max. 20 g Spitze-Spitze, Messwiderstand Dünnfilm			
	Hochvibrationsfeste Fühlerspitze max. 50 g Spitze- Spitze, Messwiderstand Dünnfilm			

Die Angaben zur Vibrationsfestigkeit beziehen sich auf die Spitze des Messeinsatzes.

Detaillierte Angaben zur Vibrationsfestigkeit von Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.

Max. Prozesstemperatur, Prozessdruck

Abhängig von:

- Belastungsdiagramm DIN 43772
- Schutzrohrausführung
 - Abmessungen
 - Werkstoff
- Prozessbedingungen
 - Strömungsgeschwindigkeit
 - Mediumsdichte

Umgebungs- und Lagertemperatur

-40 ... +80 °C

Andere Umgebungs- und Lagertemperaturen auf Anfrage

Schutzrohrberechnung

Bei kritischen Einsatzbedingungen wird eine Schutzrohrberechnung als WIKA-Ingenieursdienstleistung nach Dittrich/Klotter empfohlen.

Hinweis: Die ASME PTC 19.3 TW-2016 ist für TR10-C nicht anwendbar.

Weitere Informationen siehe Technische Information IN 00.15 "Festigkeitsberechnungen für Schutzrohre".

Zertifikate/Zeugnisse (Option)

Zeugnisart	Mess- genauigkeit	Material- zertifikat 1)
2.2-Werkszeugnis	x	x
3.1-Abnahmeprüfzeugnis	x	x
DKD/DAkkS-Kalibrierzertifikat	x	-

1) Schutzrohre

Die verschiedenen Zeugnisse sind miteinander kombinierbar.

Zur Kalibrierung wird der Messeinsatz aus dem Thermometer entnommen. Die Mindestlänge (metallischer Teil des Fühlers) zur Durchführung einer Messgenauigkeitsprüfung 3.1 oder DKD/DAkkS beträgt 100 mm.
Kalibrierung von kürzeren Längen auf Anfrage.

Bestellangaben

technik@riegler.de

Typ / Explosionsschutz / Weitere Zulassungen, Zertifikate / Sensor / Genauigkeitsklasse, Einsatzbereich des Sensors / Anschlussgehäuse / Kabeleingang / Transmitter / Anschluss zum Halsrohr / Schutzrohr/ Schutzrohrdurchmesser / Prozessanschluss / Schutzrohrwerkstoff / Einbaulänge / Halslänge / Zeugnisse / Optionen

© 04/2003 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

WIKA Datenblatt TE 60.03 · 02/2021

Seite 18 von 18

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30

Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406

info@wika.de www.wika.de

Einsatzgrenzen und Genauigkeiten von Platin-Widerstandsthermometern nach DIN EN IEC 60751

WIKA Datenblatt IN 00.17

Allgemeines

Die Temperatur ist ein Maß für den Wärmezustand eines Stoffes, also ein Maß für die mittlere Bewegungsenergie seiner Moleküle. Ein enger thermischer Kontakt zweier Körper ist notwendig, damit diese die gleiche Temperatur annehmen (Temperaturausgleich). Der zu messende Körper ist so eng wie möglich mit dem Temperaturfühlersystem in Verbindung zu bringen.

Die bekanntesten Temperaturmessverfahren beruhen auf Stoff- oder Körpereigenschaften, die sich mit der Temperatur ändern. Eines der am häufigsten eingesetzten Verfahren ist die Messung mit einem Widerstandsthermometer.

Das vorliegende Dokument fasst die wiederkehrenden Begriffe und Technologien zusammen, die für alle von WIKA produzierten Widerstandsthermometer gültig sind.

Standardausführung

Wenn keine weiteren Angaben oder Kundenwünsche vorliegen, empfehlen wir diese Auswahl, bzw. wählen wir bei Angebot oder Produktion des Thermometers diese Option aus

Sensorik

Bei einem Widerstandsthermometer ändert sich der elektrische Widerstand eines Sensors mit der Temperatur. Da der Widerstand mit der Temperatur steigt, spricht man von einem PTC (Positive Temperature Coefficient).

Im industriellen Einsatz werden üblicherweise Pt100- oder Pt1000-Messwiderstände verwendet. Die genauen Eigenschaften dieser Messwiderstände und der darauf basierenden Thermometer sind in der IEC 60751 festgelegt. Die wichtigsten Eigenschaften sind im Folgenden zusammengefasst.

Widerstandsgrundwerte bei 0 °C

Bezeichnung	Grundwert in Ω		
Pt100	100		
Pt1000	1.000		

Fett gedruckt: Standardausführung

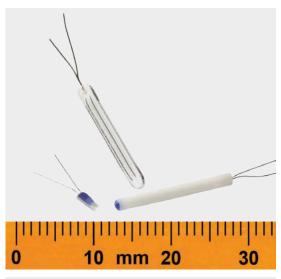


Abb. links: Dünnschicht-Messwiderstand Abb. Mitte: Glass-Messwiderstand Abb. rechts: Keramik-Messwiderstand

WIKA Datenblatt IN 00.17 · 11/2020

Seite 1 von 8

Bauformen von Messwiderständen

Die im Thermometer eingesetzten Messwiderstände können als drahtgewickelte Messwiderstände (engl. W = Wire Wound) oder als Dünnschicht-Messwiderstände (auch Flach- oder Dünnfilm-Messwiderstand, engl. F = Thin Film) ausgeführt sein.

Dünnschicht-Messwiderstände (F), Standardausführung

Bei Dünnschicht-Messwiderständen (Thin Film), auch als Flach-Messwiderstände bezeichnet, wird eine sehr dünne Platinschicht auf eine keramische Trägerplatte aufgebracht. Danach werden Anschlussdrähte kontaktiert. Abschließend werden Platinschicht und Anschlussdrahtverbindung durch eine weitere Schicht aus Glas gegen Außeneinflüsse versiegelt.

Der Dünnschicht-Messwiderstand zeichnet sich aus durch:

- Temperaturbereich: -50 ... +500 °C ¹⁾
- Hohe Vibrationsbeständigkeit
- Sehr kleine Baugröße
- Gutes Preis-/Leistungsverhältnis

Dünnschicht-Messwiderstände stellen die Standardbauform dar, sofern diese nicht durch den Temperaturbereich oder expliziten Kundenwunsch ausgeschlossen werden.

Dünnschicht-Messwiderstand

Drahtgewickelte Messwiderstände (W)

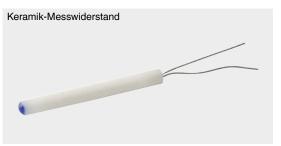
Bei dieser Bauform wird ein sehr dünner Platindraht von einem runden Schutzkörper umhüllt. Diese Bauform ist seit Jahrzehnten bewährt und weltweit akzeptiert. Es gibt zwei Unterformen die sich in der Wahl des Isolationsmaterials unterscheiden:

■ Glas-Messwiderstand

Bei einem Glas-Messwiderstand ist der bifilare Draht in einem Glaskörper eingeschmolzen.

Der Glas-Messwiderstand zeichnet sich aus durch:

- Temperaturbereich: -196 ... +400 °C 1)
- Hohe Vibrationsbeständigkeit


1) Angaben gelten für Klasse B, siehe auch Tabelle Seite 4

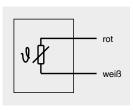
■ Keramik-Messwiderstand

Bei einem Keramik-Messwiderstand befindet sich der Platindraht als Spirale aufgewickelt in einer runden Aussparung des Schutzköpers.

Der Keramik-Messwiderstand zeichnet sich aus durch:

- Temperaturbereich: -196 ... +600 °C ¹)
- Eingeschränkte Vibrationsbeständigkeit

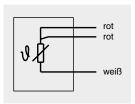
WIKA Datenblatt IN 00.17 · 11/2020


Seite 2 von 8

Sensor-Schaltungsarten

■ 2-Leiter-Schaltung

Der Leitungswiderstand bis zum Sensor geht als Fehler in die Messung ein. Daher ist diese Schaltungsart bei Verwendung von Pt100-Messwiderständen für die Genauigkeitsklassen A und AA nicht sinnvoll, da der elektrische Widerstand der Anschlussleitungen und dessen eigene Temperaturabhängigkeit voll in das Messergebnis eingehen und dieses somit verfälschen.

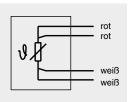


Anwendungen

- Anschlussleitungen bis 250 mm
- Standard bei Verwendung von Pt1000-Messwiderständen

■ 3-Leiter-Schaltung (Standardausführung)

Der Einfluss des Leitungswiderstandes wird weitestgehend kompensiert. Die maximale Länge der Anschlussleitung hängt vom Leitungsquerschnitt und von den Kompensationsmöglichkeiten der Auswerteelektronik (Transmitter, Anzeige, Regler oder Prozessleitsystem) ab.


Anwendungen

■ Anschlussleitungen bis ca. 30 m

■ 4-Leiter-Schaltung

Der Einfluss der Anschlussleitung auf das Messergebnis wird vollständig eliminiert, da auch eventuelle Asymmetrien im Leitungswiderstand der Anschlussleitung kompensiert werden.

Die maximale Länge der Anschlussleitung hängt vom Leitungsquerschnitt und von den Kompensationsmöglichkeiten der Auswerteelektronik (Transmitter, Anzeige, Regler oder Prozessleitsystem) ab. Eine 4-Leiter-Schaltung kann auch als 2- oder 3-Leiter-Schaltung verwendet werden, in dem man die überzähligen Leiter nicht anschließt.

Anwendungen

- Labortechnik
- Kalibriertechnik
- Genauigkeitsklasse A oder AA
- Anschlussleitungen bis 1.000 m

Doppelsensoren

In der Standardausführung ist ein Sensor montiert.

Die Farbkombination schwarz/gelb ist für einen optionalen zweiten Messwiderstand reserviert. Bei bestimmten Kombinationen (z. B. bei kleinen Durchmessern) können Doppelsensoren technisch ausgeschlossen sein.

WIKA Datenblatt IN 00.17 · 11/2020

Seite 3 von 8

Beziehung zwischen Temperatur und Widerstand

Für jede Temperatur existiert genau ein Widerstandswert. Dieser eindeutige Zusammenhang kann mit mathematischen Formeln beschrieben werden.

Für den Temperaturbereich -200 ... 0 °C gilt unabhängig von der Bauform des Widerstandes:

$$R_t = R_0 [1 + At + Bt^2 + C(t - 100 \,^{\circ}\text{C}) \cdot t^3]$$

Für den Temperaturbereich 0 ... 600 °C gilt:

$$R_t = R_0[1 + At + Bt^2]$$

Legende:

t = Temperatur in °C

R_t = Widerstand in Ohm bei der gemessenen Temperatur
R₀ = Widerstand in Ohm bei t = 0 °C (z. B. 100 Ohm)

Zur Berechnung gelten die folgenden Konstanten

 $A = 3.9083 \cdot 10^{-3} \, (^{\circ}\text{C}^{-1})$

 $B = -5,7750 \cdot 10^{-7} \, (^{\circ}\text{C}^{-2})$

 $C = -4,1830 \cdot 10^{-12} (^{\circ}C^{-4})$

Einsatzgrenzen und Genauigkeitsklassen

Die beiden Bauformen von Messwiderständen (Drahtgewickelt/Dünnschicht) unterscheiden sich in Bezug auf die möglichen Genauigkeiten bei den Einsatztemperaturen.

Klasse	Temperaturbereich in °C		Grenzabweichung
	Drahtgewickelt (W)	Dünnschicht (F)	
В	-196 +600	-50 +500	±(0,30 + 0,0050 t) 1)
Α	-100 +450	-30 +300	$\pm (0,15 + 0,0020 \mid t \mid)^{1)}$
AA	-50 +250	0 150	$\pm (0,10 + 0,0017 \mid t \mid)^{1)}$

1) | t | ist der Zahlenwert der Temperatur in °C ohne Berücksichtigung des Vorzeichens

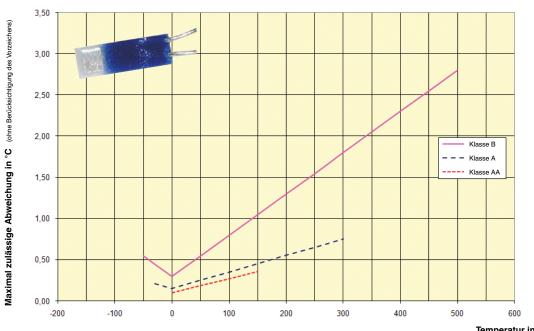
Fett gedruckt: Standardausführung

Thermometer/Messeinsätze mit eingebauten Messwiderständen können unter bestimmten Voraussetzungen in einem Temperaturbereich betrieben werden, der sich außerhalb des Temperaturbereiches der angegebenen Klasse befindet.

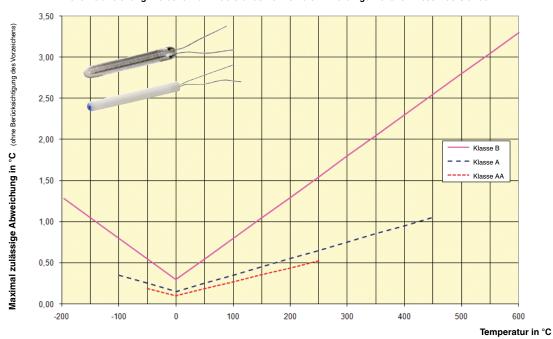
Bezüglich der Einhaltung der Grenzabweichung (Klassengenauigkeit) ist Folgendes zu beachten:

Bei Standardgeräten kann die zuvor angegebene Klasse A nicht länger bestätigt werden, wenn das Thermometer bzw. der Messeinsatz ober- oder unterhalb des Klasse A-Temperaturbereiches betrieben wurde. Die Verweildauer ist dabei nicht relevant.

Auch wenn sich die Temperatur wieder im Bereich der Klasse A befindet, ist die Klassengenauigkeit des Messwiderstandes nicht mehr definiert.


WIKA Datenblatt IN 00.17 · 11/2020

Seite 4 von 8


Widerstandswerte und Grenzabweichungen bei ausgewählten Temperaturen (Pt100)

Grenzabweichung IEC 60751 für Widerstandsthermometer mit Schicht-Messwiderständen

Temperatur in °C

Grenzabweichung IEC 60751 für Widerstandsthermometer mit drahtgewickelten Messwiderständen

WIKA Datenblatt IN 00.17 · 11/2020

Seite 5 von 8

Temperaturwerte und Grenzabweichungen bei ausgewählten Widerstandswerten (Pt100)

Widerstandswert in Ω	Temperaturwert in °C (ITS 90)				
	Genauigkeitsklasse B	Genauigkeitsklasse A	Genauigkeitsklasse AA		
50	-126,07124,22	-125,55124,75	-125,46124,83		
80	-51,3250,22	-51,0250,52	-50,9650,58		
100	-0,30 +0,30	-0,15 +0,15	-0,10 +0,10		
110	25,26 26,11	25,48 25,89	25,54 25,83		
150	129,50 131,40	130,04 130,86	130,13 130,77		
200	264,72 267,98	265,67 267,03	265,80 266,90		
300	554,60 560,78	556,42 558,95	556,64 558,74		

Diese Tabelle dient zur Überprüfung der Auswerteelektronik, z. B. mittels einer Widerstandsdekade:
D. h. wird der Sensor oder Messwiderstand durch eine Widerstandsdekade simuliert, sollte die auswertende Elektronik einen Temperaturwert innerhalb der oben angegebenen Grenzwerte anzeigen.

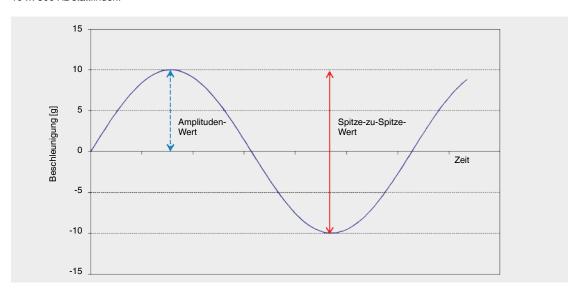
Widerstandswerte und Grenzabweichungen bei ausgewählten Temperaturen (Pt100)

Temperatur in °C	Widerstandswert in Ω					
(ITS 90)	Genauigkeitsklasse B	Genauigkeitsklasse B Genauigkeitsklasse A				
-196	19,69 20,80	-	-			
-100	59,93 60,58	60,11 60,40	-			
-50	80,09 80,52	80,21 80,41	80,23 80,38			
-30	88,04 88,40	88,14 88,30	88,16 88,28			
0	99,88 100,12	99,94 100,06	99,96 100,04			
20	107,64 107,95	107,72 107,87	107,74 107,85			
100	138,20 138,81	138,37 138,64	138,40 138,61			
150	156,93 157,72	157,16 157,49	157,91 157,64			
250	193,54 194,66	193,86 194,33	193,91 194,29			
300	211,41 212,69	211,78 212,32	-			
450	263,31 265,04	263,82 264,53	-			
500	280,04 281,91	-	-			
600	312,65 314,77	-	-			

Diese Tabelle bildet den Kalibriervorgang an vordefinierten Temperaturen ab.

D. h. wenn ein Temperaturnormal zur Verfügung steht, so sollte der Widerstandswert des Prüflings innerhalb der o. a. Grenzen liegen.

WIKA Datenblatt IN 00.17 · 11/2020


Seite 6 von 8

Vibrationsbeständigkeit von Widerstandsthermometern

Gemäß der IEC 60751 kann die Konstruktion eines Widerstandsthermometers immer mit durch Schwingungen hervorgerufenen Beschleunigungen belastet werden, die bis zu 3 g (30 m/s²) betragen und in einem Frequenzbereich von 10 ... 500 Hz stattfinden.

Die in den Datenblättern der elektrischen Thermometer von WIKA aufgeführten Vibrationsbeständigkeitsangaben beziehen sich auf den Wert "Spitze-Spitze".

Ausführung	Geforderte Vibrationsbeständigkeit nach IEC 60751 in g ¹⁾ (Spitze-Spitze)	Ermittelte Vibrationsbeständigkeit WIKA nach IEC 60751 in g ¹⁾ (Spitze-Spitze)
Standard	3	6
Vibrationsbeständig (Optional, Messwiderstand Dünnfilm)	-	20
Hochvibrationsbeständig (Sonderaufbau, Messwiderstand Dünnfilm)	-	50

1) 9,81 m/s²

Messwiderstand		Vibrationsbeständigkeit (Spitze-Spitze)					
		Ø 3 mm (MI-Leitung)			Ø 6 mm (MI-Leitung)		
		6 g	20 g	50 g	6 g	20 g	50 g
Dünnschicht (F)	1 x Pt100 / 1 x Pt1000	x	x	x	x	x	x
	2 x Pt100 / 2 x Pt1000	x	x	-	x	x	x
Dünnschicht, bodenempfindlich (FS)	1 x Pt100 / 1 x Pt1000	x	-	-	x	-	-
Drahtgewickelt (W)	1 x Pt100 / 1 x Pt1000	x	-	-	x	-	-
	2 x Pt100 / 2 x Pt1000	х	-	-	х	-	-

Die in den Datenblättern der elektrischen Thermometer von WIKA aufgeführten Vibrationsbeständigkeitsangaben beziehen sich nur auf die Fühlerspitze.

WIKA Datenblatt IN 00.17 · 11/2020

Seite 7 von 8

© 01/2010 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

WIKA Datenblatt IN 00.17 · 11/2020

Seite 8 von 8

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406 info@wika.de

www.wika.de

RIEGLER & Co. KG Schützenstraße 27 72574 Bad Urach Tel. +49 7125 9497-642

technik@riegler.de

11/2020 DE

Seite 28 von 28